Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya
نویسندگان
چکیده
Rising temperatures and changing winds drive the expansion of the highly productive polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent. Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis antarctica, and they generate the organic carbon that enters the resident microbial food web. Yet, little is known about how Phaeocystis blooms shape bacterial community structures and carbon fluxes in these systems. We identified the bacterial communities that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral summers of 2007-2008 and 2010-2011. These communities are distinct from those determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula. Diversity patterns for most microbial taxa in the Amundsen Sea depended on location (e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson glacier) and depth, reflecting different niche adaptations within the confines of this isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis) and together contributed up to 73% of the bacterial community. Size fractionation of the bacterial community [<3 μm (free-living bacteria) vs. >3 μm (particle-associated bacteria)] identified several taxa (especially SAR92) that were preferentially associated with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology. In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and members of the Cryomorphaceae suggesting that they play important roles in the decay of Phaeocystis blooms.
منابع مشابه
Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica
Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their func...
متن کاملIn situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders
The Amundsen Sea Polynya is characterized by large phytoplankton blooms, which makes this region disproportionately important relative to its size for the biogeochemistry of the Southern Ocean. In situ data on phytoplankton are limited, which is problematic given recent reports of sustained change in the Amundsen Sea. During two field expeditions to the Amundsen Sea during austral summer 2010–2...
متن کاملIce sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica
[1] Our understanding of past sea-ice variability is limited by the short length of satellite and instrumental records. Proxy records can extend these observations but require further development and validation. We compare methanesulfonic acid (MSA) and chloride (Cl) concentrations from a new firn core from coastal West Antarctica with satellite-derived observations of regional sea-ice concentr...
متن کاملParticle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula
We report results from a yearlong, moored sediment trap in the Amundsen Sea Polynya (ASP), the first such time series in this remote and productive ecosystem. Results are compared to a long-term (1992–2013) time series from the western Antarctic Peninsula (WAP). The ASP trap was deployed from December 2010 to December 2011 at 350 m depth. We observed two brief, but high flux events, peaking at ...
متن کاملLead Sources to the Amundsen Sea, West Antarctica.
The global prevalence of industrial lead (Pb) contamination was exemplified decades ago by the predominance of anthropogenic Pb in samples of Antarctic surface ice and in Southern Ocean surface waters. Decreases in environmental Pb contamination corresponding with the near-global phase-out of leaded automobile gasoline beginning in the 1970s have since been observed. Measurements of Pb concentr...
متن کامل